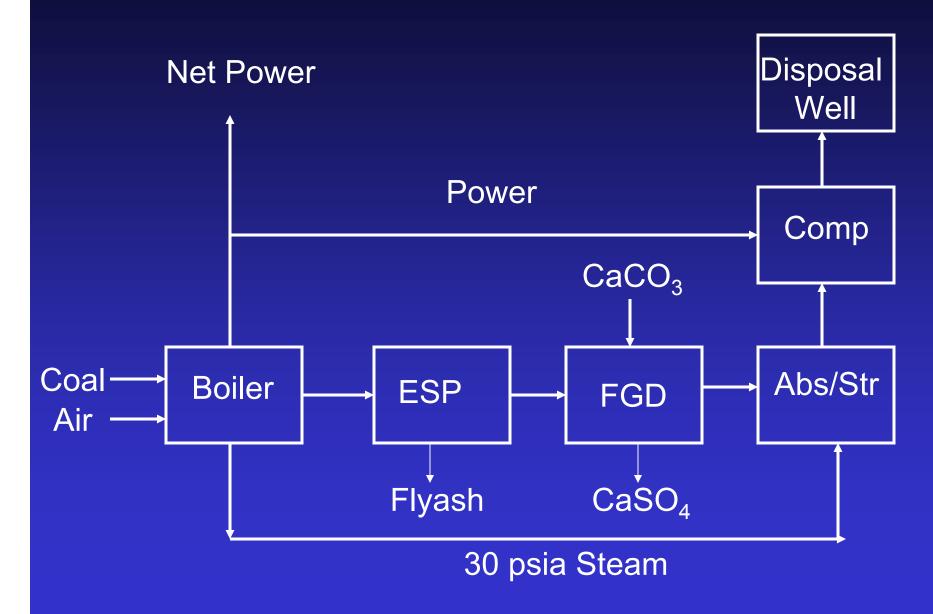
Alternative Stripper Configurations for CO₂ Capture by Aqueous Amines

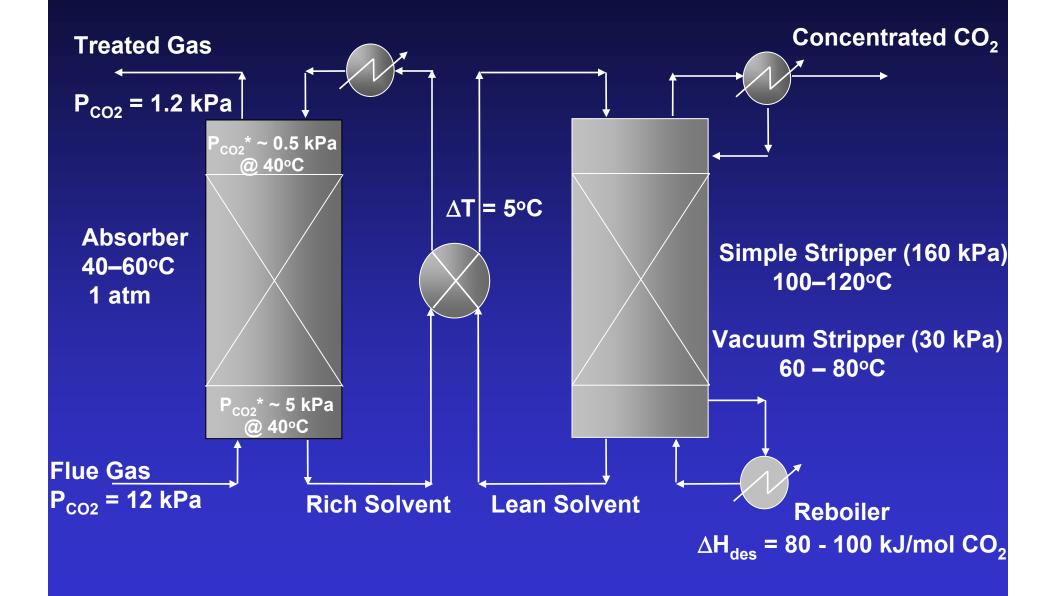
Babatunde A. Oyenekan¹ and Gary T. Rochelle Department of Chemical Engineering The University of Texas at Austin

¹Current Affiliation: Chevron Energy Technology Company, Richmond California.

Sixth Annual Conference on Carbon Capture and Sequestration Pittsburgh, PA


May 7–10, 2007.

This presentation was prepared with the support of the U.S. Department of Energy under Award No. DE-FC26-02NT41440 and other industrial sponsors. However, any opinions, findings, conclusions and recommendations expressed therein are those of the authors and do not reflect the views of the DOE or the industrial sponsors.


Outline

- Introduction
- Practical Problems and Solutions
 - Improved Solvents
 - Matrix Stripper
- Equilibrium Model Description and Results
- Conclusions

System for CO₂ Capture and Sequestration

Modified Baseline Absorber/Stripper Configuration

7m (30-wt%) monoethanolamine (MEA)

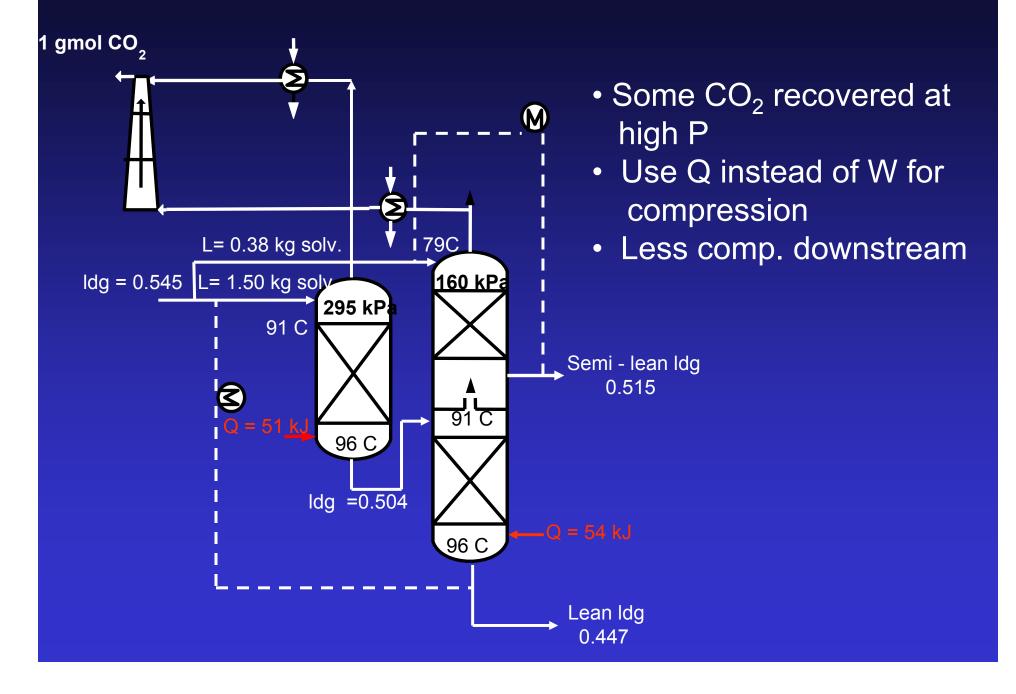
- Industrial state-of-the-art, Demonstrated Tech
- Economic
- Good mass transfer rates

Practical Problems

- High Energy Requirement
 - Reboiler duty (80% of operating cost)
- Amine degradation and corrosion
 - Make-up costs
- High Capital Cost
 - Large Absorption and Stripping Columns

Focus of research Reduce energy consumption (reboiler duty)

$$Q_{reb} = \Delta H_{des} + \begin{pmatrix} n_{H2O} & \Delta H_{vap} \\ n_{CO2} & \Delta H_{vap} \end{pmatrix} + \begin{pmatrix} L & Cp & \Delta T \\ n_{CO2} & \Delta H_{vap} \end{pmatrix}$$


Approach to reducing energy consumption

- Alternative solvents to 7m (30-wt%) MEA
 - Heat of absorption
 - Capacity
 - Rates of reaction with CO₂
- Innovative process flow schemes
 - Understand stripper operation
 - Energy Integration

Improved Solvents

- Lower energy consumption/better mass transfer/less degradation and corrosion than MEA
 - promoted K₂CO₃ (K₂CO₃/PZ)
 - promoted MEA (MEA/PZ)
 - promoted tertiary amines (MDEA/PZ)
 - mildly hindered amines (KS-1)
- Greater capacity (4m K+/4m PZ, MDEA/PZ, KS-1)
 - less sensible heat requirement
- Enhanced mass transfer (PZ/K₂CO₃, MEA/PZ)
 - less capital cost, closer approach to saturation
- Less degradation and corrosion (PZ/K₂CO₃,KS-1,KS-2,KS-3)
 - reduced make-up costs

Matrix Stripper

Evaluation in Aspen Custom Modeler (ACM)

Features

- Flash section, 10 sections, Equilibrium reboiler
- Compression to 330 kPa

VLE

$$P_{CO2}^* = f(T,Idg)$$

Model Assumptions

- Well-mixed L & V phases
- 40%,100%,100% Murphree Eff. for CO₂, T & H₂O
- Negligible vaporization of solvent

Performance of Strippers Concept of Equivalent Work (W_{eq})

Why W_{eq}?

- Compare stripper configurations on same basis.
- Compare Q and W.

$$=0.75 \,Q_{\text{reb}} \left[\frac{(T_{\text{reb}} + 10) - 313}{(T_{\text{reb}} + 10)} \right] + W_{\text{comp}}$$

(75% Adiabatic Efficiency in Compressor)

Generic Solvent Characteristics

Solvent	6.4m K+/ 1.6m PZ	5m K ⁺ / 2.5m PZ	4m K+/ 4m PZ	7m MEA	MEA/ PZ	MDEA/ PZ	KS-1
ΔH_{abs} (kJ/gmol)	50	63	67	84	85	62	73
Rich P _{CO2} * (kPa) @ 40°C	5	5	7.5	5	7.5	7.5	5
Capacity	0.91	0.93	1.34	0.85	1.12	1.77	2.11
VLE Sources	Cullinane (2005)		Freguia (2002)		Posey (1996)	MHI	

Predicted Performance of Different Solvents and Flow Schemes (90% removal, P_{reb} = 160 kPa, ΔT = 5°C, P_{final} = 330 kPa)

	4m K+/	7m MEA	MEA/PZ	MDEA/PZ	
	4m PZ				
	Equivalent Work (kJ/gmol CO ₂)				
Baseline (10°C)	21.4	22.3	20.0	18.3	
Modified Baseline (5°C)	19.0	19.7	17.5	17.2	
Matrix	15.6	18.0	15.7	15.1	

Effect of ΔH_{abs} on energy requirement (90% removal, $\Delta T = 5^{\circ}C$, $P_{final} = 330$ kPa)

	6.4m K+/	5m K+/
	1.6m PZ	2.5m PZ
Capacity $ \left[\frac{\text{mol CO}_2}{\text{kg H}_2\text{O}} \right] $	0.91	0.93
ΔH_{abs} (kJ/gmol)	50	63
	Equivalent Work	
	(kJ/gmol CO ₂)	
Modified	27.4	22.6
Baseline		
Vacuum	23.7	23.1

Effect of capacity on energy requirement

(90% removal, $P_{reb} = 160 \text{ kPa}$, $\Delta T = 5^{\circ}\text{C}$, $P_{final} = 330 \text{ kPa}$)

	5m K+/	MDEA/PZ
	2.5m PZ	
∆H _{abs} (kJ/gmol)	63	62
Capacity $ \left[\frac{\text{mol CO}_2}{\text{kg H}_2\text{O}} \right] $	0.93	1.77
	Equivalent Work (kJ/gmol CO ₂)	
Modified baseline	22.6	17.2
Matrix	21.7	15.1

Solvent performance for simple strippers

(90% removal, $\Delta T = 5$ °C, $P_{final} = 330 \text{ kPa}$)

	6.4m K+/ 1.6m PZ	MDEA/PZ	7m MEA	
ΔH _{abs} (kJ/gmol)	50	62	84	
P (kPa)	Equivalent Work (kJ/gmol CO ₂)			
160	27.4	17.2	19.7	
30	23.7	19.8	22.6	

Energy requirement for separation and compression to 10 MPa

Separation Method	W_{sep}	W_{comp}	Total W _{eq}
	kJ/gmol CO ₂		
Ideal Sep., (40°C,100 kPa) Isothermal Comp.	7.3	10.8	18.1
Ideal Sep., (40°C,100 kPa) 75% Adiabatic Comp. In 5 stages	7.3	16.8	24.1
Ideal Membrane (40°C) (75% adiabatic comp. eff. in 5 stages)	11.6	16.8	28.4
7m MEA, 10°C, 160 kPa	19.5	14.0	33.5
7m MEA, 5°C, 160 kPa	16.8	14.0	30.8
Matrix (MDEA/PZ)	14.6	11.6	26.2

Conclusions

- MEA/PZ and MDEA/PZ are solvent alternatives to 7m MEA.
- The matrix configuration is an attractive stripper configuration.
- At a fixed capacity, solvents with high ΔH_{abs} require less energy for stripping (temperature swing effect).
- Less energy is required by high capacity solvents with equivalent ΔH_{abs} .
- Matrix using MDEA/PZ offers 22% and 15% energy savings over the baseline and the modified baseline with stripping and compression to 10 MPa.
- ➤ Typical predicted energy requirement for stripping and compression to 10 MPa (30 kJ/gmol CO₂) is about 20% of the output from a 500 MW power plant with 90% CO₂ removal.

Contact Information

Babatunde Oyenekan, Ph.D.
Chevron Energy Technology Company
100 Chevron Way
Richmond CA 94802
Tel: 510-242-1051

Prof. Gary T. Rochelle
Department of Chemical Engineering
The University of Texas at Austin

Babatunde.Oyenekan@chevron.com

Austin, TX

Tel: 512-471-7230

rochelle@che.utexas.edu